23 research outputs found

    Characterization of Photoacoustic Flow Cytometry Signals

    Get PDF
    Photoacoustic flow cytometry has been utilized to clinically determine the presence of melanoma circulating tumor cells (CTCs). Further investigation was conducted into the morphology of detection signals and how they could be manipulated to allow for further classification. Novel features were extracted from waveforms that appear to have strong classification ability. Neural networks were also used to determine classification potential and the creation of feature mapping for future unsupervised classification. Detections were expanded from single waves to a time dependent multiwave event. Waveforms were also determined to be of non-parametric distribution, allowing for classification by neural network but not allowing for reduction into feature maps with techniques used in the study

    Temporal Artery versus Bladder Thermometry during Adult Medical-Surgical Intensive Care Monitoring: An Observational Study

    Get PDF
    Abstract Background We sought to evaluate agreement between a new and widely implemented method of temperature measurement in critical care, temporal artery thermometry and an established method of core temperature measurement, bladder thermometry as performed in clinical practice. Methods Temperatures were simultaneously recorded hourly (n = 736 observations) using both devices as part of routine clinical monitoring in 14 critically ill adult patients with temperatures ranging ≄1°C prior to consent. Results The mean difference between temporal artery and bladder temperatures measured was -0.44°C (95% confidence interval, -0.47°C to -0.41°C), with temporal artery readings lower than bladder temperatures. Agreement between the two devices was greatest for normothermia (36.0°C to < 38.3°C) (mean difference -0.35°C [95% confidence interval, -0.37°C to -0.33°C]). The temporal artery thermometer recorded higher temperatures during hypothermia (< 36°C) (mean difference 0.66°C [95% confidence interval, 0.53°C to 0.79°C]) and lower temperatures during hyperthermia (≄38.3°C) (mean difference -0.90°C [95% confidence interval, -0.99°C to -0.81°C]). The sensitivity for detecting fever (core temperature ≄38.3°C) using the temporal artery thermometer was 0.26 (95% confidence interval, 0.20 to 0.33), and the specificity was 0.99 (95% confidence interval, 0.98 to 0.99). The positive likelihood ratio for fever was 24.6 (95% confidence interval, 10.7 to 56.8); the negative likelihood ratio was 0.75 (95% confidence interval, 0.68 to 0.82). Conclusions Temporal artery thermometry produces somewhat surprising disagreement with an established method of core temperature measurement and should not to be used in situations where body temperature needs to be measured with accuracy
    corecore